Multiscale Residual Convolution Neural Network and Sector Descriptor-Based Road Detection Method
نویسندگان
چکیده
منابع مشابه
Learning across scales - A multiscale method for Convolution Neural Networks
In this work we explore the connection between Convolution Neural Networks, partial differential equations, multigrid/multiscale methods and and optimal control. We show that convolution neural networks can be represented as a discretization of nonlinear partial differential equations, and that the learning process can be interpreted as a control problem where we attempt to estimate the coeffic...
متن کاملNon-flat Road Detection Based on A Local Descriptor
Abstrct The detection of ground plane and free space remains challenging for non-flat plane, especially with the varying latitudinal and longitudinal slope or in the case of multi-ground plane. In this paper, we propose a framework of the ground plane detection with stereo vision. The main contribution of this paper is a newly proposed descriptor which is implemented in the disparity image to o...
متن کاملRadial Basis Neural Network Based Islanding Detection in Distributed Generation
This article presents a Radial Basis Neural Network (RBNN) based islanding detection technique. Islanding detection and prevention is a mandatory requirement for grid-connected distributed generation (DG) systems. Several methods based on passive and active detection scheme have been proposed. While passive schemes have a large non detection zone (NDZ), concern has been raised on active method ...
متن کاملMultiscale recurrent neural network based language model
We describe a novel recurrent neural network-based language model (RNNLM) dealing with multiple time-scales of contexts. The RNNLM is now a technical standard in language modeling because it remembers some lengths of contexts. However, the RNNLM can only deal with a single time-scale of a context, regardless of the subsequent words and topic of the spoken utterance, even though the optimal time...
متن کاملAircraft detection in remote sensing images based on saliency and convolution neural network
New algorithms and architectures for the current industrial wireless sensor networks shall be explored to ensure the efficiency, robustness, and consistence in variable application environments which concern different issues, such as the smart grid, water supply, and gas monitoring. Object detection automatic in remote sensing images has always been a hot topic. Using the conventional deep conv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2956725